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Abstract

Multidimensional scaling (lIDS) methods IHDSCAL and ALSCAL are
collpared using the Monte carlo method. The criteria used were
recovery of true distances, recovery of stimulus configuration and
recovery of true weight structure. IlIDSCAL' performs better than
ALSCAL - except for a few cases•
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I. Introduction

Multidimensional Scaling (MOS) may be defined b~oadly as
a family of geometric models for multidimensional
representation of data and a corresponding set of methods for
fitting such models to actual data (Carrol~ and Arabie, 1980).
While several different geometric models comprise the family
of models referred to in this definition (see Carroll and
Arabie, 1980) for a thorough review of these models), a much
narrower def inition would I imit the term to spatial distance
models for similarities, dissimilarities or other proximities
data. Spatial distance models in MeS provide us with a set of
tools for recovering the underlying structure which is
"hidden" in the data, and for generating a. spatial
representation of the relationships among the set of n stimuli
or objects designated as 01' 02' .•. ,Ono
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. In practical terms, MDS allows us to make a: picture or
map of the information in the data. When the set of data is
large, the practical value of MOS is clear, since in such
cases a map is generally easier and more informative to look
at than the data itself. In spatial distance models, data are
organized so that objects which are si_ilar to one another (in
some empirical sense) are placed close together in the space,
and objects which are dissimilar to one another are placed far
from each other in the space (Spence, 1972). Thus, the
primary objective in MDS for spatial distance models is to map
the objects in a multidimensional space in such a way that
their relative positions in the space reflect the degree of
proximity (similarity) between the objects.

Perhaps the easiest way to understand what MOS does is to
consider the following problem familiar to MOS users (Kruskal
and Wish, 1969). Let us assume that one is shown the map of
the United States and is asked to construct the table of
intercity distances. This is an easy task. With the use of
straightedge and a compass, one could easily produce the
distance between th~ cities. But if the problem is reversed,
say if one is giveri the set of distances, such as those found
in the bottom of maps, and asked to recreate the map itself,
then this proves to be a far more difficult exercise, though
it can be solved with the use of a straightedge and a compass
in two dimensions. MOS is a method for solving this reverse
problem without a straightedge and a compass (Kruskal and
Wish, 1978). In actual application settings the problem is
exceedingly more complex because the data usually contain
error or "noise" and it is rarely known in advance whether a
two-dimensiol)al solution will be adequate (Dillion and
Goldstein, 1984).

II. Heed for the stUdy

During the last two decades, studies on MOS were
especially concerned with MOS procedures which operated on
two-way data matrices (stenson and Knoll, 1969: Klahr, 1969:
Young, 1970; Wagenaar and Padmos, 1971: Sherman,' 1972: Isaac
and Poor, 1974; Spence and Domoney, 1974; Spence, 1972; Girard
and Cliff, 1976) to the exclusion of three-way scaling
methods. With the variety of three-way methods for fitting
the weighted Euclidean (INDSCAL) model, and with little known
with respect to the goodness of their SOlutions, for particular
types of data sets, a user is apt to choose a method based on
its accessibility.' The purpose of this stUdy was to
investigate the behavior of the two most widely used three-way
MOS algorithms that have been developed 'for fitting the
weighted Euclidean model: INDSCAL designed specifically for
metric data and ALSCAL designed specifically for nonmetric
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. . ..
data. While highly popular, r.elativelY'little is known~about

the properties of these techniques and the validity of 'the
solutions they provide under different conditions.

Accordingly, the purpose of this study was to investigate
by Monte Carlo methods, the validity of INDSCAL and ALSCAL to
recover the true structure inherent in different sets of
simulated data as a function of number of sUbjects, number of
stimuli, error level and type of monotonicity
(transformation).

Recovery of the true structure of the data, the criterion
to be used in this study to compare the properties of the
INDSCAL and the ALSCAL algorithms, is important as it reflects
the validity of a solution.

III. Design and Data Generation

In order to compare the ability of three-way metric
INDSCAL and three-way nonmetric and metric versions of ALSCAL
to recover the true structure of proximity data, a simulation
study was employed. The general design of the simulation
study was as follows: (a) generation of simulated proximity
measures which have a known structure for a sample of
individuals, (b) analysis of these proximity measues via the
INDSCAL and the ALSCAL procedures, (c) a study of the degree
to which each of these procedures is able to recover the known
structure of the data.

In generating the various sets of simUlated data, four
characteristics of the data were controlled as independent
variables: (a) number of subjects; (b) nUmber of stimUli, (0)
amount of error, and (d)' type of monotinicity
(transformation). Because of the differences between the
INDSCAL fitting criteria, it would be very difficult, if not
impossible, to determine equivalent convergence criteria fbr
each algorithm: i.e. values that »squired rather small changes
in order for the literature prooess to terminate (MacCallum,
et.al., 1978). Because ALSCAL uaes'SSTRESS while INDSCAL uses
VAF as the criterion for convergence only three of the four
possible measures Of recovery of the structure of the data
were employed in this study. These were (a) RSQ, the squared
correlation between true and recovered distances among
stimUli, or proportion of variance in the true distances
accounted for by the reconstructed distances, (b) 6, the root
mean squared deviation between true and recovered projections
of the n-th stimuli on the r-dimensions, and (c) ~, 1.0 minus
the mean of the cosines of the angles between the true and
recovered subject weight vectors. Better levels of recovery
are represented by ,higher values of RSQ and lower values of 6
and '4'•
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The design incorporated 1.5 and 30 subjects and 12 al1.d 20
stimuli. These values were chosen as being typical of those
employed in empirical reserarch utilizing MOS. The
distribution of errors were N(0,6e) with 6e equal to 0.10 and
0.70, corresponding to small and large amounts of error,
respectively (Girard and Cliff, 1976). Finally, five
monotonic transformation of the data were specified. To
satisfy the metric assumptions of INDSCAL, true distances, d,
were transformed' according to dP, where p = 1( linear). To
satisfy the assumptionss of ordinal ALSCAL, true distances
within each slice were rank ordered, rank(d). The three
remaining transformations representing a variety of possible
nonlinear monotonic transformations were d2 (a concave
transformation), log d (a convex transformation), and d3 (a
concave to convex transformation). Figures (1), (2) and (3)
present the three nonlinear monotonic transformations employed
in this study.

Note that Figure (1) is the concave transformation obtained by
squaring the true distances; Figure (2) is the convex
transformation obtained by taking the logarithm of the true
distance; and Figure (3) is the cubic transformation formed by
fitting the true distances to the polynomial

• f(x) = x3 - 2.55x2 + 2.1675x (1)

•

•

Equation (1) was derived by evaluating the general polynomial
equation at the median of the true distances.

For each fo the 40 (2x2x2x5) number of subjects x number
o~ stimuli x error level· x type of monotonic transformation,
five replications of sets of stimulated proximities were
generated, resulting in 200 such data sets. Each data set was
analyzed by each of the metric INDSCAL and the metric and
nonmetric ALSCAL procedures resulting in 600 analyses.

True configurations were generated to have two underlying
dimensions. Twelve and twenty stimulus coordinates for each
of the two dimensions were generated by selecting at random 12
and 20 points respectively from a uniform distribution over
the unit square. Subject weight matrices, consisting of 15
and 30 subjects were generated for each of the two dimensions
sUbject to the constraint that a moderate level of individual
differences be maintained. Accordingly, individual weights
varied betweedn 10 and 80 degrees from the positive horizontal
axis in the two-dimensional space (maccallum, et. a., 1977).
Moreover, to avoid large variance across individual with
respect to distance from the origin in the weight space, the
weights generated for each individual were rescaled so that
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their sum of squares is cil .where ci is Sl random number of
lying in the interval 0.5 to 1.0. Accordingly, each ci
represents the squared distance of an individual from the
origin in the weiqht space.

Based on these true subject.' weiqhts and' stimulus
coordinates, true Euclidean distances were computed between
all pairs of points within a given data set. For each
individual, distances were normalized to unit varianqe.
Distances were then transformed according to the five types of
monotonicity (transformations), and small or large error was
added.

IV. EY~,luation of Recovery of True Structure

. As mentioned earlier in this report, three aspects af
recovery of structure of the data were studied.

1. Goodness of fit to True DistAnces.. The first aspect of
recovery Which was investiq8ted was the ability of both the
INDSCAL and the ALSCAL methods to recover the true interpoint
distances, the di;ko To measure this, distances were computed
on the'basis of b6th the INDSCAL and the ALSCAL solutions, and
then these recovered distances were correlated across all
stimulus pairs and individu~ls with the known true distances.
The actual dependent variabl~ employed was the square of this
correlation, RSQ, which corr-ssponds to the .0 indax of metric
determinacy" (Young, 1970) extended to a sample of
individuals. Mathematically, aSQ is defined as

..

•

,

•

RSQ =
A A

m (~dijkdijk) = (~dijk)(Edijk)
(2)

where dijk is the true distance between stimUli j and k for
A

individual i; dj. ik is the recovered.· distance computed across
the n(q-l)/2 st1~uluS pairs and m individuals.

2 9 Reqoys[y Of True StimulUS CQnfigyr§tioDo The secan~

aspect of ~~covery examined W~$ the ability of both ~@

INDSCAL ~nd the ALSCAL procedures to ~scover th~ true sti~~l@a

configulrsl'tion 0 To measure this property, the square lrOiOlt tOlf
tb.<El msan sqj1IJlariSd diff(S~ence bet.~esn the tli:'u.e and! recov<!:~t9dl.

proj~ctions, computed across s~imuliand dimensions W~$

•

..
•
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computed. This is defined as

6 = {
n r
I: I:

j=l t=l

1\

(Xjt - Xjt)2
}1/2

nr
( 3 )

•
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where, Xit is the recovered projection of stimulus on
dimension t. For per'fect recovery of all stimuLus
coordinates, 6 would be zero (macCallum, et a l , , 1977). The
use of this recovery requires some important considerations.
First, since the actual values of the true and recovered
projections were compared, it was important that the scale
properties of the true and recovered stimulus spaces be the
same. For the true space, each stimulus dimension was
constructed to have a mean of zero and a sum of squares equal
to 1. Since the ALSCAL algorithm scales its solution so that
the projections on each stimulus dimension have a mean of zero
and a sum of squares equal to n, number of stimulus points,
each of the points in the recovered space wasl divided by the
square root of n to convert to a unit sum of/squares. Since
the normalization of dimensions in INDSCAL agrees with the
normalization of the true space mentioned earlier, INDSCAL
solutions did not need to be\normalized. Secondly, it was
important to take into account the possiQi~ity that the
dimensions of the recovered stimulus space represented
permutations and/or reflections of the dimensions of the true
stimulus space. To allow for this possibility, the recovered
dimensions were whenever necessary, rearranged and reflected
so as to obtain in the optimal value of 6. This was done by
computing 6 for all possible permutations of the recovered
ALSCAL and INDSCAL dimension which exhibited a negative
correlation between true and recovered projections was
reflected in the recovered space , By this procedure, the
optimal arrangement of recovered dimensions, and corresponding
measure of recovery of the true stimulus configuration was
obtained for each set of simulated data (MacCallum, et. al.,
1977) .

3. Recovery of True Weights. The third aspect of recovery
Which was of interest was the ability of both the INDSCAL and
the ALSCAL procedures to recover the true weights employed by
the individuals. : Following Takane, et.al., (1977), th~
development of an index of recovery of weights was approached
from a geometric perpective. A given set of weights for m
individuals on r dimensions is often represented geometrically
as m points in r dimensions, with the coordinates of the
points corresponding to the weights. To examine recovery of
weights one could plot, in a single r dimensional space, two
sets of points: one set corresponding to the true weights and
one set corresponding to ~he recovered weights. Perfect
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recovery would simply require that the m vectors defined by
the recovered weights would each lie in the same direction as
the m corresponding vectors defined by the true weights.
Takane, Young, de Leeuw (1977) and MacCallum (1977) point out
that for conditional data one cannot expect ALSCAL to recover
true weights but only true weight ratios. Geometrically, this
means that for conditional data .ALSCAL cannot be expected to
r~cover the true location of an individual point in the weight
space, but only its angular orientation with respect to the
coordinate axes. This phenomenon is also true of INDSCAL.
Therefore, a measure of recovery of the weight structure is
based on a ratio comparison of the angular orientation of the
m true weight vectors and the m recovered weight vectors.
This was accomplished as follows: first the r dimensions of
the recovered weight space were rearranged so as to match the
rearrangement of the recovered stimUlus dimensions, (i.e.,
after necessary permutations and reflections): and for each of
the individual, the cosine of the angle between the true
weight vector and the recovered weight vector was computed~

which was denoted as 9i i then the mean of these cosines was
computed, and the meas6re of recovery was defined as in
MacCallum, et al., (1977) by

•

•
...

m cos9i
cp = 1.0 - E

i=l m
(4)

•
For perfect recovery of weight vectors, cp would be zerO.

V. Data Analysis

Thus, three dependent variables were defined: RSQ or
metric determinac~~, measuring recovery of true distances: 6,
measuring recovery of the true stimulus configuration: and CPt
measuring recovery of the true weight structure. Values of
these three indices were obtained for each of the 200 INDSCAL
and 400 ALSCAL solutions.

To determine the effect of the independent variables on
the three dependent variables (recovery measures) 3 separate
2x2X2x5x3 five-way univariate repeated measures analyses of
variance were performed. Within this framework, the first
four factors were between data sets, and the last factor
was the wi thin data sets, method of analysis (INDSCAL vs 0

ALSCAL-ORDINAL vs. ALSCAL-INTERVAL) •

•

•
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Before conducting the analyses of variance,
redundancy among the three outcome measures was examined.
The pooled within cell correlations among the
dependent variables were as follows: for INDSCAL,
rCRSQl& = -.4576, r(RSOlcp ::: -.3018, reScp=.4971J for ALSCAL
ORDINAL, r(RSOl& = -.0890, r(RSQ)!p :::; .2686, reScp :::; .6275: and
for ALSCAL-INTERVAL, ·rCRSQl6 = -.0740, r(RSOl~ =: .2303, reScp =
.6054. Since most of ehe w1thin cell correra~ions are low and
only two are approximately .6, the three measures of recovery
may be viewed as measuring fairly different aspects of
recovery and therefore separate univariate analyses of
variance will provide little redundancy of information. The
results of the analyses of variance are summarized in Tables
I, 2, and 4 which contain the significance levels and omega
squares (w2) for all the three recovery measures. omega
square is a measure of effect size, i.e., proportion of
variance explained. Because statistically signific~nt results
may not be of practical import, only those which are
meaningful, i.e., those which explain about 5% or more of the
variance (w2 _ .05) are discussed.

1. Index of Metric Determinacy (RSO)

Table 1 shows the summary of the analysis of
variance of RSQ, or index of metric determinacy. The table
reveals that a three-way interaction (transformation by method
by error level) was significant, E(8,354) = 16.88907:
p<.OOOOI, which explained 7% of the within data sets variance.
The significant two-way interactions are those between
transformation and method (w2=.11626), I( 8,354) = 27.64061,
p<.OOOOI, and between error level and method (W2= . 48258 ) ,
1:( 2,354) :::; 451.11101, p<OOOOl. Tests of simple interaction
effects yielded five significant two-way interactions, i.e.,
method by error level at each type of transformation: method
by error at linear, l( 2,320) = 132.16, pe , 00001: method by
error at square, F(2,320) = 50.39, p<.OOOOI: method by error
at cubic, E(2,320) = 137.17, p<OOOOI: method by error at rank,
E(2,320) = 94.77, p<.OOOOI and method by error at logarithmic,
1:(2,320) = 126.95, p<.OOOOl. Figures (4), (5), (6), (7), and
(8) show the five simple interactions.

Figures ( 4 ) through ( 8) show that at each error level,
the three methods differ at each type of transformation.
Specifically, the Scheffe tests, p<.05 reveal that at small
error, ALSCAL performs better than INDSCAL under the oubd.c ,
rank. and logarithmic: while INDSCAL is superior to ALSCAL
under the large error in all types of transformation. Table
la shows the cell means and standard deviatiort of the RSQ
measure •
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Index of Fit for stimulus Dimensions (6)

A summary of the analysis of variance for this measure is
presented in Table 2. Note that of the between data factors,
only one main effect is significant, i.e., the number of
stimuli which is explaining about 9% of the variance,
F(1,177) = 21.17216, p<.OOOOl. All the between data factors
interactions were not significant. With respect to the within
data factors, variance accounted for is substantial for method
of analysis (w2 = .76529), F( 2,354) = 628.25886, p-c, 00001.
Although the two-way interaction between number of stimuli and
method is significant, variance accounted for is not
meaningful, (w2<.01), hence this is disregarded. The marginal
means shown on Table 3 reveals the superiority of INDSCAL over
ALSCAL in the 6 measure. Also, the Scheffe tests, p<.05 show
significant differences between INDSCAL and ALSCAL in both the
metric and the nonmetric versions. Table za (see Appendix)
presents the cell means and standard deviati~ns of' the
measure.,

Index of Fit for Subject Weights (W)o

Table 4 shows the results lof the analysis of variance.
of cpo Of the lbetween data factors the two-way interaction
between type of transformation and number of SUbjects
accounts for about 5% of the variance, E(4,177) = 3.51024,
p , = .00873. Regarding the within data factors, method of
analysis was significant accou~ting'for about 57% of the
variance" l(2,354) = 350.48285, P<oOOOOl. There 'are 21
together six significant interactions, but the only one that
is meaningful is the two-way interaction between error level
and method of analysis which is explaining for about 5% of the
variance, F(2,354) = 30.49185, p<.OOOOl. Table 4a (see
Appendix)' shows 'the cell means and standard deviations of the
cp measure. Figure (9) elucidates the meaning of the
significant interaction.

Figure (9) shows that in the recovery of subject weights,
INDSCAL is better than ALSCAL for both small and large error
but its superiority to ALSCAL is enhanced under small error.

•

•
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Discussion

Recal~ that better levels of recovery are represented by
higher values of RSQ and lower values of 6 and~. Therefore
RSQ values in t.he neighborhood of .80 and .90 found in the
present study can be considered reasonsbly gOOd fit.
According to MacCallum, et.al., (1977), RSQ, 6.or a ~ in the
neighborhood of .30 or .40 would not in&icate accurate
recovery of the true distances, true stimulus coordinates and
true SUbject weights. Therefore, the values found in this
stu&y in all the three indices good recovery except for RSQ in
the large error level. ,

The findings of 'this Monte Carlo stUdy confirm some of
the' findings of MacCsllum, et. a1., in 1977 and in 1978.' In
1977, MacCallum, at al., found out that nUmber of sUbjects did.
not have an effect on the outcome vsriables. This stUdy did
find the same result. In 1978, MacCallum at sl., found th<e
superiority of INDSCAL over ALSCAL in terms of ~he recovery of
true structure of the dst.a except for some nonlinear monotonic
transformati~n where ALSC~ out.performed INDSCAL. This stUdy
also arrived at the same finding. The difference lies in the
nonlinear monotonic t.rsnsformat.ions that were applied to
distort tha trus dist.ancl8s. As mentioned earlier t.his
stUdy employed five types of transformations~ linear,
square, cubic, zank , BInd logarithmic. In t.e:rrms of t.hs
effect. of t.he in~ependent variables (subject.s/stimuli/slZ'lZ'olZ."
level/t.ransformat.ion) on t.he dependent. variablss, t.he IWDSCAL
algorit.hm proves t.o be more robust than t.he ALSCAL algorithm 0

Specificmlly, in t.erms of t.he recovery of the true ~ista~cas,

IWDSCAL recovers true struct.UlZ'e of t.hs dat.s bet.ter than ALSCAL
under lar9~ error and at all t.ypes of transformatio~.

!Hroweve'lf II In three nontLnear monotonic distortion of the t.rue
dist.aD'ncas ll i oa., cubic, rank II and logarit.hmic SInd at. sm~ll
error ALSC&L did liiilore accurately recover true structure than
INDSCAL. Also, in tarms of the recovery of t.he true stimulus
confiC!}\ll1LSlt.ion, IWDSCAL solut.ions gave a bett.er mat.ch of t.he
'true confie;rursl'tion than }}-.LSCAL~,," And finally II in terms of th.e
rscovery of SUbject weights, . INDSCAL proves suparior t.o
ALSCAL. Fiqures (10), (11) II and (12) show how IN'DSCAL and
~LSCAL differ In t.ha recovery,: of stimulus coordinates and
sll.llIoject weights 'i.1llhdar a linearly transformed set of dist.sJrnceso
Th.e dats t.hst were used iJrn thes<e figures WiSlre darts
representing fift.ea~ subjects a~d t.welve stimulio Notic~ thst
INDS~Los recov3red stimulus space is closer to the tlZ."US
S~i~~lUS confi9Ur~tio~ than ALSCALoso

•..

•
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11)' an attempt _to explain .the -cHfferent results' between
the IHDSCALand ALSCAL algorithm, it appears. that due to
ALSeAL's nonmetric nature, it may be more susceptible to the
~itting of random error than JNDSCAL, resulting in better fit
to the observed data /but -/p6orer recovery of true structure
~Maccallum, at al., 1978). The primary difference between the
fitting- algorithm for ordinal ALSCAL and INDSCAL is the
optimal scaling phase undertaken' by ALSCAL. For the
specification of data as sUbject conditional and at the
ordinal level, ALSCAL performs, on each iteration, a unique
monotonic transformation of the proximity measures from each
sUbject to improve the fit of the recovered distances to the
proximity measures. According to Maccallum, et al., (1978),
the optimal scaling phase of ALSCAL may be overly susceptible
to the fitting of random error in some cases , i.e., the
optimal .scaling may be used to improve fit to deviations from
linearity, whether these deviations come from systematic
distortion or random error. This conditin would be true when
the relationship between true distances and observed
proximitj.es' is approximately linear. In this case, ALSCAL
will be overly sensitive to deviations from linearity, while
INDSCAL will merely attempt to fit the roughly linear
relationship that is distorted by 'random er~or. However, if
the relatinship~between proximities and true 'distances is
severely'nonlinear, the relative ability of INDSCAL and ALSCAL
to recOver the ·true structure might be reversed, i •e , , the
optimal scaling phase of ALSCAL would then respond to that
strongly nonlinear relationship, thus enhancing recovery of
true structure. On the other hand, INDSCAL would linearly fit
th~ mode~ to the severely distorted proximities, hence
achieving poorer recovery of true structure. '

In the light of'-these 'findings, researches who are trying
to examine structure in empirical data may be advised that
INDSCAL appears to be the preferred method for fitting the
weighted Euclidean model. Although most phenomena in life are
ordinally scaled, it is most likely the case, as noted by
Weeks and Bentler (cited by MacCallum, et 81., 1978) that
empirical data are roughly linear with respect to the true
underlying structure. It ~s for this reason that the metrio
INDSCAL excelled the nonmetric ALSCAL •
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Table 1
SlqDi!lc~Dce Levtl~ 'and O,eqa Sg~a[es• Prol Piyt-~~y Analysis of Variance of RSQ

.. =~~_:~~~~~~~~=~I~~~~~~~~~~~=[ OF_~~[= __~~~ __J~~i-~]=-~~~~~L~~~~; F_

sHriBER PAT! SETS
Vitbin + Residual .41163 117 .002lJ
A (Trans!1 4.00500 4 1.00125 .05919 13O.5JS41 <.DOOOI
S (Ksubl .00049 1 .ooon .21101 IS
C (!lstill .03486 I •. OHU · .00041' lUI176 .00015
o (Irr) 61.90128 I 61.90828 .31698 26620.44165 <.00001
AS .00156 4 .000·39 .167" IS
AC .17012 4 .04253 .00231' 11.21152 <.DOOOI

• AD .97229 4 .21307 .01426' 104. 52045 <.00001
Be .00040 1 .00040 .17130 IS
BO .00090 1 .000'0 .38537 SS
CO .00210 1 .00280 1.20205 IS

VITHI! DATA SITS
Within t Residual .05S49 354 .00016

H (llethod) .03119 2 .oms .10841 101.1JJl3 <'00001
AI .03466 8 .004J] · .116.26 27.64061 <.00001
n .00077 2 .00038 2.44368 8S

--. CE .00029 2 .000 14 .91241 KS
01 .14143 2 .01011 .48258 451.11101 COOOOI
A91 .00101 8 .00013 .8020' IS
ACI . 00 216 8 .00027 1.72160 KS
ADI .02118 8 .00265 · .07021 16.88907 <. 00001• 8CI .00034 2 .00017 1.09041 NS
801 .00006 2 \ .0000l .20338 KS
COl .um .00165 .010711 10.55540 .00004

t Significant but not.le!ninqfal .

•
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Table 2

Slgnlficdgce Levels agd Qceqa Square~

FrOB Five-Way Analysis of Variance of ~

Soorce ---i----~-----r---;;--I--~~~--I:~---;---- sig~;-
_____L ____________.l.________ ___ _____~_

BETitE. OAT! SETS
Within t Residoal 2.9360' 111 .01659
A(Transf) .13865 4 .03466 2.08915 U~

B(Isobl .01m 1 .01249 .mS3 us
C(Ostia) .35120 I .35120 .0'294 21.11216 <.00001
D (Err I .05474 1 .05414 3.30012 US
AD .00100 4 .00025 .01503 OS
AC' .Om2 4 .00'" .60163 US
AD .00802 4 .00201 .12091 NS
BC .03651 1 .03657 2.20440 lIS

SO .00161 1 .00161 .09719 U
CD .oom 1 .oom .20440 KS

,ITRII DATa SETS
Within t Residoal 1.59332 354 .00450
g l"ethodl 5.65~41 2 2.82113 .16~29 621.2S886 <.00001
.\8 .0~J5r S .0066' 1.48610 KS

BE .00101 2 .00354 .18617 US

CE .027U 2 .01310 .00310 1 J.OH23 .auu
uK .01212 2 .00636 1.41322 KS
.m .00645 a .00081 .11302 KS'

ACK .01146 S .00143 . JI631 Kg .
AD! .00512 8 .00064 .14233 HS
BCK .00206 2 .00103 .21912 KS

SDg .00191 2 .00099 .2l9H KS

CDR .oom 2 .0014' . J3184 NS

t Siqnificant but not leaninqful.

~ Higher order interactions not appearing in the table were sappr-ssed becaase they ezplained less
than .2\ of the variaoce.
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fable 2a

Cell HeaDS ~nd Staodard Deviations
l

15 SUBJECTS
SMALL ERROR LUGS EIIOI •

IROSCAL ALSCAL-ORDIRAL ALSCAL-IITBRVAL IIOSCAL ALSCAL-ORDI IAL ALSCAL-UTIRVAL

- - - - - -I SD I SO X SO r SO I SD I SD
ll.ttUlli <1"

111 Linear .01226 (.0026l) .24348 1.13949) .wn (.140011 .05190 (.009111 .25201 (,18192) .24411 (.0"511
(21 Sqaare~ .02072 (.002641 .25956 1.152U1 .26296 (.14941-1 '.03511 (.006811 .26114 (,121541 .26131 (.125"1
(31 Cubic: .06160 1.015961 .2S536 !.I 39861 .28412 1.139061 .14916 (-.067931 .Jll34 (.11410) ,2IHO (.106501 .~

l4IRaDt .05044 (.016521 .27644 (.146971 .30294 (.1H521 .12804 (.OU"I .30210 (.113451 .3094& /.10474)
(51 L09 .05542 (.01101 .17080 1.141911 .26600 1.137781 .0'300 (.01545) .28694 (.11101) .21386 (.l1HlI

20 STI HULl
(11 Lloen .00952 (.301041 .22661 1.12H61 .2H!4 (.123961 .03912 (.003701 .2004 '(.H010) .24536 (.019931
121 Squared .01828 {.00122 I .226~6 (.1,25201 .22814 (.12017) .OHU (.003101 .23HO (.11437) .21tH (.113861 •III Cabic: .OHl2 1.00.8nl .12908 (.116691 .2H70 (.115701 .07730 (.014291 .230'0 (.017!51 .. 23152 1.0'1441
(fl Rut .041OS (.00~561 .23642 (.116141 ·.237041.114611 .07854 (.012011 .2&901 (.036941 .26336 (.Om3)
151 L09 .oms (.009941 .22166 (.113511 .22382 (.10130) .08712 (.aI5541 .2l9l0·( .071211 .2])98 (.0';08)

30 SUBJECTS
12 STIftOLI
(1.1 Liour .01018 (.00160) .28420 1.15501 .29340 (.156771 .0tHO (.00820) ,.30416 t.nnn .299i6 (.108561
(2) Squred .01928 (.001751 .19042 (.161211 .HUO (.1568'1 .02470 (.ooml .30000 (.in06, .29130 (.145651
III Cabic .11294 (.115711 .29534 (,140711 .19128 .1.140801 .15221 (.100521' .31414 (.015141 .31128 (.OHn!
(4) Rut .0"" (.12103) .32954 (.051331 .33096 (.052331 .lSS22 1'.127161 .343H (.OtI511 :JH14 (.OH04)
(51 L09 .3567hl..009311 .29364 1.154221 .mH 1.148341 .08m (.015H1 .320]2 (.I124-i) .]2010 (.l1lS7)

20 STlBULl
III LiDur .00110 (.00100) .22241 .(.124041 . .22210 1.124171 .02752 (. 005H I .2]126 (.091131 .23164 (.09649)
(2) Squared .uno (.001601 :.22702(.126091 .2296. (.121111 .01511 (.002771 .23020 (.115411 .21116 {.113021 •
III Cabic .03Ut (.016061 :.22982 (.117101 .23112 (.116621 .05556 (.011931 .22120 (.090951 .2 2ti~ i ;09 ))51
(4) RaDt .03121 (.00691) .22854 1.118011 .23004 (.115461 .0555' (.0111'1 .250n (.0510'1 ."2U14 (.067101
(5) L09 .04146 (.001451 ;22591 (.116371 .23044 (.101411 .06151 (.010121 .23710 (.01061 I .2lJ22 1.090161

. .
•
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Table 3 .'
,

Marginal Means (iSa. ~. -I '" , :~. . . ' .. '

,1, ',' ' ., ~

------- ------------------ ------
RSQ

-------• - - . ,-
COUU I SD coun I SO couU ' .J SO

?raDS f ., 1....
Linear 120 .5816 (.360B,) 120 .ml '(.13991 120 .: ,.087.4 . '(.Oml
Sqmed 120 .6624 (. 2539) 120 .1773 ' ': (.IUlI 120 .093t. (.0'151

.f> Cubic 120 . 4605 1.3512 I, 120 .205S ,(.12171 120 .084)- ", (.0512)
Rant 120 .:4622 (.35371 120 .Hit (.12831 120 .OHS ' (.05641
Loq , 120 .468t • (. J050 I 120 .1970 (.12 831 120 .0855," '(.05HI

Isob
fifteeD 300 .5261 l.J37H 300 .ms (.1306 i 300 .0865 (.0525)
Thi,rty . 300 .5m (.3356) 300 ,1986 (.13991 lOO .0892 (; 0'721

Sstil

• hehe 300 .5194 (. HOI lOa .2112 (.14561 300 .0820 (.0601)
TveDtr 300 .5346 l.J3S61 300 .2691 (.l1m 300 ' .0'16 I ' (. 0689)

grr
'Slll111 ' 300 .. 8482 1.011911 300 .1845 .. (.14m JOO .0919 . (. 01931
Large 300 :2051 (.1161) 300 .2036 . 1.1256 ) 300 .0838 (.OH91

Hethod
! IUOSCAL 200 .5lU 1.31141 200 .05Gll 1.0 S40) 200 .0326 (.• 04861

ALSC/iL-ORDIUL 200 :5193 (.34491 200 .26261 (.1095) 200 .1175 ' (.0559)
ALSCU-IU~RRVAL 200 .5172 (.34761 200 .26270 (.10841 200 .1133 ' . [.05Q9J

------------ --------

•

•

.. ,
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Table 4'

S19~lflcaoc~ ~eyel' aDd Omega S~uare,

Frop,fiyc-Way Analysis of Variance of -

-----------------------·--------------·---j--=r-----------
, . Soorce' ! 55 \ OF I HS I e.u2. . p I Siq of P___________~_~---------l----~--- -_____.1_____

BETill1 O~T! 58TS
Within i.Residoal .76ll2 171 .0001
A(Traosfr .oom 4 .00141 .34252 H~

. B (Isobl .00112 1 .00112 .mH KS
C (Istill) :0200' 1 .0200' ,01728 1 U5922 .03223
~ lEu) .. 00912 1 .0098 2 2.21121 KS
AB .06054 4 .01513 .04142 3.51024 .00a73
AC .01615 4 .oom .91111 NS
AD .01720 4 .00430 .9'163 KS
BC .oom 1 .0092& 2.14848 KS
BD .00324 1 .00324 .75238 KS
CD .00147 1 .00147 .H121 HS

WITBII OATA'iITS
Within t Residoa1 .46251 354 .00131
I (Methodl .91597 2 .~5m .56663 350.41285 <.00081
AK .03221 I .00403 .OUl2 1 1.01130 .00221
aE .02843 2 .01112- .01681 1 1D.81005 .00003
ex .00251 2 .oom .98181 KS
OK .01'" 2 .03984 .• 04856 30. mss <.00001
AU .oml 8 .00281 .G-llooa 2.19864 .02103
ACI .04084 1 .00510 .02206 1 1.90668 .00019
AOI .00111 1 .00098 .15288 Kg
BCI .01111 2 .00885 .01016 1 6.77638 .00129
BDI .00091 2 .00045 .3.4643. KS
COl .001H 2 .00051 .0155 NS

I SlqoificlDt bat not .leaninqfu1.

~ Higher order interactions not appearing in the table vere soppressed becaase they eJp1ained less
thaD .2\ of tbe variance.

•

•
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•
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Recommendations

This researcher feels that there are two areas to explore
for further research along Multidimensional Scaling analysis.
First, since the amount of error has been shown repeatedly to
be the most important factor in the "goodness" of
multidimensional scaling solutions, attention should be .
focused on empricial studies of the variables· affec;:ting
measurement error'~ e.g., human error as method of coliecting
data, sUbject familiarity with stimuli, subject; motivation,
difficulty of jUdgments/or subject's perceptions of MDS is
that real data genrally has some degree.of error in it. Thus,
the question. arises: "How much error can we tolerate and yet

. expect to reconstruct the geometric representation to an

. acceptable degree?18 .

. Second, since' this study tried to look at factors that
distinguished metric from non~etric NOS, still there should be .

. .'other factors· or variables that 'have' not yet been explored.
Perhaps some kind 'of transformation of the true distances
.( i . e., a. higher-order polynomial of degree 4, 5, or 6; or a

"product, of this higher-order polynomial and a trigonometric.
'function) will do. .

•

•

"

•

•
I
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